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Abstract—A single layer of voids in a ductile solid, with no other voids present. acts as an
inhomogeneity that promotes the onset of plastic flow localization in a shear band. For such a void-
sheet consisting of a row of circular cylindrical voids the onset of localization is analysed, taking
full account of the interaction between neighbouring voids. If a porous ductile material model is
used to analyse this behaviour, representing the void-sheet as a slice of material with initial porosity,
the void volume fraction to be used is not well defined. However. the present full numerical analysis
of the localization problem is used to calibrate the simple model. Also the effect of inclusions inside
nucleated voids is studied. and it is found that the additional void growth enforced by such inclusions
can have a significant influence on localization predictions.

1. INTRODUCTION

Several investigations of ductile materials containing microscopic voids have shown that
the resistance to localization of plastic flow in a shear band is strongly influenced by
porosity. Yamumoto (1978) made use of Gurson's (1977) ditatant plasticity model of a
porous ductile solid to show this dependence, and the effect of void nucleation was included
in studies based on the same material model by Needleman and Rice (1978) and Saje et al.
(1982). More recent studies have shown that the additional influence of the formation of a
rounded corner on the yield surface, modelled in terms of a kinematic hardening description
of a porous ductile material, results in carlier localization (Mear and Hutchinson, 1985,
Tvergaard, 1987).

Cell model studics representing the etfect of periodic arrays of voids have also been
used to direetly study the onset of localization in ductile porous solids. Such studies take
full account of the nonuniform stress and strain distributions and the interaction between
neighbouring voids, whereas the porous ductile material models represent the local stress
distribution around voids in terms of an average flow stress value. For a square array of
circular cylindrical voids in a material subject to plane strain tension Tvergaard (1981) has
analysed the bifurcation into a periodic pattern, which represents the mode of deformation
inside a shecar band. It was found that after a small modification of the Gurson model,
localization predictions based on this model were in good agreement with those obtained
by the more accurate numerical study. This covers the critical values of strains and stresses
as well as the angle of inclination of the first critical shear band.

Analyses for a circular cylindrical body containing a spherical void have been used by
Tvergaard (1982) to investigate a material with a periodic distribution of spherical voids.
This cell model was also used to predict localization, but due to the assumption of axisym-
metry only bands normal to the maximum principal tensile stress can be represented. More
recently, the same type of model problem has been used by Koplik and Needleman (1987)
to study the void voalescence behaviour well beyond the onset of localization. In order to
consider localization in an inclined shear band for a material containing spherical voids a
full three-dimensional analysis is required, as that carried out recently in a study of the
interaction of two size-scales of voids (Tvergaard, 1988).

If the voids are only present along a single plane in the material, this void sheet will
act as an imperfection, which promotes localization along that plane. In terms of a porous
material model this situation would be represented by a thin slice of material containing
initial porosity, with no porosity outside. However, the void volume fraction to be used
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inside the band is not well defined when there is only a single layer of voids. With this
quantity undefined. a cell model study 1s needed to determine the loculization behaviour.
taking into account the actual stress and strain fields in the material near the voids. Such
analyses are carried out here for a layer of circular cylindrical voids in a material subject
to plane strain conditions.

The problem considered here is also of interest in other cases where voids tend to
appear in a single layer. Thus, in an aluminum alloy with coarse grain boundary particles,
investigated by Becker er al. (1989). voids nucleate at the grain boundaries. and the
appropriate width of the grain boundary porous zone is an issue, as well as the appropriate
void volume fraction inside this zone.

2. PROBLEM FORMULATION

In the material analysed the initial inhomogeneity is represented by a row of uniformly
spaced circular cylindrical holes with the radius R, and the spacing 2D, as shown in Fig. |.
The initial angle of inclination between the void-sheet and the x'-axis is . The dimensions
of the block of material are assumed infinite relative to the void spacing. and the principal
macroscropic true stresses are o, and g, in the x'- and x*-directions, respectively. Thus, the
material far from the void sheet must behave as a uniformly strained material subject to
the prescribed stress history. All significant differences from this uniform ficld are contained
in a band around the voids, as that between the two dashed lines parallel with the void
sheet in Fig. L. If the band ts made sufficiently wide relative to the void spacing, the fields
in the outer parts of the band will be essentially identical to the uniform ficlds outside the

band.

a, @,

Fig. I. Material containing a row of uniformly spaced circular eylindrical voids. The region ABCD
is analysed numerically.
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As shown in Fig. | the band is divided into a number of cells with sides parallel to the
x-axis. The initial width of a cell is 24, = 2D, cos ¥, and the initial height is B,. so that
the initial width of the band analysed is 28, cos ¢,. Since the solution is periodic along the
void sheet. with a period corresponding to the void spacing, all the cells undergo identical
behaviour, Therefore. in the numerical solution it is only necessary to analyse one of the
cells, i.e. the region ABCD shown in Fig. {. The formulation of the boundary conditions
for this cell is rather similar to that used by Fleck er al. (1988) in a study of the nucleation
and growth of voids in a shear field. However, in the present shear localization problem
the width of the cell changes and the edges rotate due to the straining of the far field. Thus,
if the current principal logarithmic strains in the far field are ¢, and ¢, (in the x'- and x*-
directions, respectively), the current width of the cell is controlled by ¢, and the current
angle of inclination ¢ of the void sheet is given by

tan ¢ = """ tan . (1)

The boundary conditions are specified in terms of the Cartesian displacement com-
ponents ' and the nominal traction components 7', where «* = 0 since plane strain con-
ditions are considered. When it is assumed that the centre of the void belonging to the cell
ABCD does not move, the displacement components 1/, and uj at the two corner points A
and B are determined by the far field strains €, and ¢, and the rotation (1) as

Ay 1) )

uy = —u
wy = —u; = A (e tan f —tan ¢r,). 3

Stmilar conditions apply to the edge DC, but here the displacements are also assumed to
vary lincarly between the two corners, to give complete compatibility with the far field.
Thus, in terms of the length measuring coordinate € on DC the displacements are

14
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w(E) = uj+ ;'%*(tté—ui). (5
&Ly

Furthermore, the resultant forees on the edge DC must agree with the stress ficld outside
the band

wn,
f T3 dS = 0,24y +uy—ul) (6)
]

w,
j T'dE = —a,(2D, sin Yo +ui—ul). (7N
n

On the cell sides AD, BC and AB the periodicity and symmetry conditions are such
that equilibrium and compatibility with the ncighbouring cells is satisficd. This is expressed
by using the length measuring coordinates &,. &5, 0, and 5, (sce Fig. 1).

W (E)~uy = u'(E:) —u (8)

W (&) —uy = u (&) —u; )]

Tl(él)_—- —Tl(szz)v Tz(f|)= “’T:(fz) (IO)
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win)= —u'(n.). u () = —uin, an
T'in) =T T (n) =T (). (12

The conditions at the void surface, (x')"+(x°)" = Rj. are
T'=T"=0. (13)

It there is a particle inside the void. the conditions are more complex. as has been
discussed by Fleck er af. (1988). Then the conditions at the void surface are conveniently
expressed in incremental form. where () denotes a small increment, using the current angle
¢ between the x'-axis and the surfuce point considered. For a bonded particle (13) is
replaced by

' cos p+utsin p =0, —u' sin p+0° cos ¢ = R, (14)

Here, 0 is the incremental angle of rotation of the particle, which is determined such that
no resultant moment acts on the particle.

Void nucleation is modelled in a few computations by assuming that all points on the
void surfiee are released from the surface simultancously (sce also Fleck er af., 1988), while
the surtiee tractions are stepped down o zero in a few subsequent increments. At points
where the radius decreases below Ry, shiding contact with the particle is assumed, described
by

(' cos P+t sin @ =0, ~ T sin g+ T cos ¢p =0 (15)

This shiding contact rematns as long as the normal stress is compressive, while other points
of the vord surfuce satisly (13).

To sunmmarize, equidibrium and compatibility inside the shice of matertal analysed is
enforeed by the edge conditions (8) (13), together with the ficld equations inside the region
ABCD. At the mterface between this slice of material and the uniform field outside,
compatibility is enforced by (4) and (3), while equilibrium is ¢nforeed by (6) and (7).

1t ts noted that the cell sides AD and BC need not be parallel with the x7-axis in the
initial configuration, as shown in Fig. . All equations are valid for other orientations too,
¢.g. for eedb sides normal to the void sheet. The cells shown in Fig. | have the advantage
that the sides remain parallel to the x“-axis in regions where the far ficld is dominant.

The cell model analysis is based on a Lagrangian formulation ol the field equations,
using the Cartesian x' coordinate system as relerence. The Lagrangian strains ire given by

0, = W, +u, +idug ) (16)

where (), denotes covartant differentiation in the reference configuration. The contra-
variant components t of the Kirchhofl stress tensor on the deformed base vectors are
related to the Cauchy stress tensor 7 by

= \/’G;'yo" {7

where ¢, and G, arc the metric tensors in the reference configuration and the current
configuration, respectively, with determinants ¢ and G. The equilibrium cquations inside
the cell are expressed in terms of the principle of virtual work.

The ductile material behaviour is represented by J-tlow theory. using the finite strain
generalization discussed by Hutchinson (1973). The incremental stress -strain relationship
is of the form 27 = L"*)j,,. with the tensor of instantancous moduli given by
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Here. o, = (35,57, 2)" 7 is the effective Mises stress. with s = 7/ —G"t{/3. the value of § is
1 or 0 for plastic yielding or elastic unloading. respectively, £ is Young's modulus. v is
Poisson’s ratio. and E, is the slope of the true stress vs natural strain curve at the stress
level o.. The uniaxial stress—strain behaviour is represented by

€= (19)

where o, is the uniaxial yield stress. and # is the strain hardening exponent,

3. SIMPLE LOCALIZATION ANALYSIS

Localization induced by a sheet of voids as that shown in Fig. 1 can also be analysed
by application of a porous material model. Then the void sheet is represented as a shice of
material with uniform void volume fraction f*, while there are no voids outside the band,
[ =0.

The fickd quantitics outside the band are identical to those of the uniform far ficld
considered in Scction 2, specificd by the external loading. Then, with the initial angle of
inclination ¥, of the band the current angle of inclination s still given by (1), The ficld
quantities inside and outside the band, denoted by () and ()°, respectively, have to satisfy
compatibility and equtlibrium over the band interface (sce Fig. 2). In the Cartesian reference
coordinate system compatibility requires continuity of the tangential derivatives of the
displacement components g, over the interfice. Thus, the displacement gradients tnside the
bund cun be expressed by

Fig. 2. Shear bund in a homogeneously strained solid.
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w, = u+cn, (20)
where n, is the unit normal in the reference state. and ¢, are parameters to be determined.
Equilibrium requires balance of the nominal tractions on euch side of the interface

(TH" =(T)". )

A set of incremental equations for ¢, are obtained by substituting the incremental constitutive
relations for the porous ductile material into the incremental form of (21), using (20) to
express the strain increments inside the band. From these incremental algebraic equations
for ¢, the onset of localization is determined as the point where elastic unloading takes place
outside the band.

The porous ductile material model proposed by Gurson (1977) makes use of an
approximate yield condition of the form ®(s".g,,. /) = 0. where ¢" is the average macro-
scopic Cauchy stress tensor, a4, 15 an equivalent tensile flow stress representing the actual
microscopic stress state in the matrix material. and fis the current void volume fraction.
An approximate vield condition derived on the basis of a spherical model problem is of the
form

(72 k

O = + 24,/ cosh <7(:; ) —(l+(q, /N =0 22)

(Y] -0y

where 6f = (35,57/2)" ¥ is the macroscopic cffective Mises stress, defined in terms of the
stress deviator s = a” — (Mot /3. The yield condition proposed by Gurson (1977) has ¢, = |
in (22): but it was tound by Tvergaard (1981, 1982) that using ¢, > 1.5 gives considerably
improved agreement with detailed numerical studies tor periodically distributed circular
cylindrical voids in clastic plastic solids (more discussion of the most appropriate ¢,-value
is given by Tvergaard, 1989).

The plastic part of the macroscopic strain-rate for the porous ductile material is taken
to be given by

(W(I)

W= A (23)

Ja'!

since normality of the plastic low rule for the matrix material implies macroscopic normality
(Gurson, 1977). Furthermore, defining the microscopic effective plastic strain &4, in terms
of the uniaxial stress-strain relation tor the matrix material, €4, = (1/E, = 1/E)d,,. and
assuming an equivalent plastic work expression, 6”5/ = (1 —f)a 5. the rate of change of
the matrix flow stress is

EE,  a"i]

= . 3
E—E (1=, 2

Gy

Since the matrix material is plastically incompressible, the rate of growth of the void volume
fraction 1s

[=(=NG"4}. (25)

The value of the parameter A in (23) is determined from the consistency condition,
& = 0. using (24) and (25). The result is

. Vi
Wh= o mg, et (26)

H

where 5 is the Jaumann rate of Cauchy stress and
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s, f . o
m, =3 ‘—’-i +2G,,, =34 sinh (ﬁ) 27)
Oy cd b EE, |1 (ag o:)]
== |-32(l-fNNm-——7 — |-+ — | {. 2
H 2 |: B(1=1) of fcoy E-E 1-f\oy +10’u (28)

Plastic vielding initiates when ® = 0, and continued plastic loading requires ® =0 and
m,6*'/ H > 0. Finally, the incremental stress-strain relationship to be used in the incremental
form of (21) is obtained by taking the total strain rate to be the sum of the elastic
and plastic parts. and inverting the resulting expression (see Needleman and Rice, 1978
Tvergaard, 1989).

It is noted that often nucleation of new voids is included in the porous ductile material
model. by adding an extra term in (25). Furthermore, (22) can be modified to better model
void coalescence at relatively large void volume fractions. However, in the present paper
neither nucleation nor coalescence will be considered.

4. NUMERICAL SOLUTION PROCEDURE

The model problem illustrated in Fig. 1 is specified by a number of conditions (1)-(12)
that rely on knowing the stress state and the strain state in the uniform ficld far away from
the void shecet. This far ficld solution is here taken to satisfy the relation

o\ = pa, (29)

where p s a fixed ratio between the principal true stresses. The corresponding principal
logarithmic strains &, and &, are determined by a simple incremental solution for the
constitutive law with instantancous moduli (18), so that the variation of the quantitics o,
&, and £,, as lunctions of the major principal stress 4. is known « priori.

The field equations inside the cell ABCD in Fig. | are solved by using a finite element
approximation of the displacement ficlds in the incremental principle of virtual work. An
example of the mesh used is shown in Fig. 3, where cach quadrilateral is built up of four
lincar displucement triangular clements.

Fig. 3. Mesh used for Ro/ D, = 0.175and ¢, = 30 .
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A special Rayleigh—Ritz finite element method (Tvergaard. 1976) is used to implement
the periodic boundary conditions. The displacements of the nodal points on the sides AD.
BC and AB are chosen as parameters in the Rayleigh-Ritz solution, together with u}, and
up. For a small prescribed increment ¢. of the major tensile stress outside the band the
corresponding change of the whole far field ts known from the a priori solution, and thus
the values u',. u5. uy and uj are directly obtained from (1)-(3). Then. the parameters in
the Ravleigh-Ritz solution are determined so that the boundary conditions (4)-(12) are
satisfied in addition to internal equilibrium.

Localization of plastic flow occurs when elastic unloading takes place outside the band,
in the far field. In the last few increments before localization ¢, has to be very small to
keep the incremental elongation 5 of the cell at a reasonable level. In these increments i},
is prescribed. with a reasonable estimate of 6. used in (1}-(3). and elastic unloading outside
the band is taken to be defined by 6, < 0 according to the integral (6) along the edge of the
cell. When the computation is continued beyond localization, 43 is also taken to be
prescribed. but here the small reductions of ¢, and ¢; during elastic unloading are neglected
in (1)-(3).

It is noted that, as a check, the same computation has been carried out with a regular
mesh inside the region ABCD, representing the case where there are no voids. For this case
it was confirmed that the uniform solution inside the cell, resulting from (1)-(12), remained
identical to the far ficld.

5. RESULTS

The material to be analysed here is taken to have the imitial yield stress ./ £ = 0.002,
the strain hardening exponent # = 10, and Poisson’s ratio v = 0.3, The imtial dimensions
of the cell analysed (see Figs | and 3) are specified by 8,/ A, = 4, and in most of the cases
considered the material far from the void sheet is subjected to uniaxial plane strain tension,
as specificd by p = 0in (29).

Figure 4 shows deformed meshes and contours of constant maximum principal log-
arithmic strain at two stages of deformation in a case where the initial void size is specitied
by R, D, = 0.125, and the initial angle of inclination of the void sheet is i, = 307, At the
first stage (Fig. 4a) the major principal logarithmic strain in the far field is ¢, = 0.033, finite
strains have started to occur near the void, and the void has grown a hittle to ¥/ V, = 1.28,
where 17 and V', are the current void volume and the initial void volume, respectively.

(a)

Fig. 4. Deformed meshes and contours of constant maximum principal logarithmic strain for
R, D, =0125and W, = 30 (a) At e, = 0.033, (b) after localization, which occurs at &, = 0.083.
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Localization of plastic flow occurs at the critical strain £ = 0.083 (in the far ficld). where
elastic unloading takes place in most of the region analysed. away from the void. The
second stage (Fig. 4b) is well beyond the onset of localization. with F7/ F, = 3.36 and very
high level of straining in the material near the void. Both the strain contours and the
deformed mesh show that the high localized deformations occur in a rather narrow band.
which is not much wider than the current void dimension. In the top part of the region
analysed the stress and strain fields remain nearly uniform throughout the deformation. at
levels agreeing very well with the specificed far field. as expected.

Figure 5 shows similar results for a larger initial void, specified by R,. D, = 0.25. again
with ¢, = 30 and p = 0. The far ficld strains at the first two stages are ¢, = 0.0036 and
£, = 0.0106, respectively, while the last stage (Fig. Sc) is way beyond localization. which
occurs at g5 = 0.0118. Thus, localization occurs soon after the stage in Fig. 5b: but it is
seen that the level of straining inside the band is much higher in Fig. Sc. As in Fig. 4 the
width of the band contuining the highly strained material appears to be a little wider than
the current void dimension.

Figure 6 shows plots of the localization strain £ vs the initial angle of inclination of
the void sheet. The munima of the curves determine the most critical orientations of the
void sheets. Results of 12 different numerical analyses are shown. covering three different
values of R,/ Dy, 0.125, 0.175 and 0.25, and including the results corresponding to Figs 4
and 3. Localization results obtained by the simple analysis (20). (21) arc also shown in Fig.
6, thus using the porous material model (223-(28), with ¢, = 1.3, to represent the void-
sheet, With no voids outside the band. /" = 0, the void-sheet is here represented by con-
sidering initial void volume fractions inside the band ranging from /' = 0.03 to /" = 0.08.
Since the strain fields outside the band used for the simple analysis are identical to the fur
ficlds used in the full numerical model problem, the current angle of inclination i at a given
strain level is the same for both models, as specified by (1).

It s seen in Fig, 6 that the general shapes of the curves found by the cellt model analysis
are in good agreement with those given by the simple shear band analysis. However, the
minima of the curves predicted by the cell model analysis occur at somewhat smaller values
of the initial angle of inclination ¢, of the void sheet: about 5 smaller than the values
found by the simple analysis. Therefore, also the current angle of inclination at the onset
of localization is smatler for the cell model analysis [see (1)),

Interpolation between the curves for various values of £ in Fig. 6 can be used to
estimalte the initial void volume friaction that gives a localization strain corresponding to
that found for a given value of R,/ Dy,. According to Fig. 6 the minimum localization strains
obtained for the values 0.125, 6.175 and 0.25 of R,/ D, arc also approximately obtained for

{a} {b) {c}

Fig. 5. Contours of constant maximum principal logarithmic strain for R,- D, = 0.25and ¢, = 30 .
(a) At g, = 0.0036, (b) at £, = 0.0106, (c) after localization, which occurs at £ = 0.01 1.
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Fig. 6. Localization strain vs initial angle of inclination of the void sheet. Predictions based on
simple shear band model are shown for comparison, for various initial void volume fractions /],
and ¢, = 1.5

the initial void volume fractions 0.029, 0.049 and 0.084, respectively, in the simple shear
band analysis.

Representing a row of voids as that shown in Fig. | in terms of a porous ductile
material model makes it necessary to estimate the appropriate void volume fraction in the
void sheet; but this requires knowledge of the width of the porous slice of material. It the
initial band width 2W, is known, together with the void spucing 20, and the radius R,
the void volume fraction inside the band can be calculated direetly. The curves in Fig. 7

 Rg/0y=0.25

0.175

Wo/Dq
o
4]
T

0123
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1 Il | « L 1 J
e} 0.02 0.04 0.06 0.08 0.10 o2
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Fig. 7. Corresponding values of initial band width 21, and veid volume fraction /. for various
values of R,/ D,. The values found in Fig. 6 are indicated by dashed circles.
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show corresponding values of the ratio W', D, and the void volume fraction f', for the
three different values 0.125. 0.175 and 0.25 of the ratio R,/ D,. The values of f{" that give
approximately the same localization strains as those found in Fig. 6 by the full numerical
analysis (see discussion above) are indicated on the curves as dashed circles. These three
points in Fig. 6. which rely on a comparison of localization predictions. provide an estimate
of the appropriate band width that should be used to calculate “the void volume fraction
in the void-sheet”. It is seen that the appropriate band width is of the order of half the void
spacing, somewhat increasing with increasing void size relative to the void spacing. In fact,
the expression

Wy/Dy =034+ Ry/ D, (30

gives a rather good representation of the band widths spectfied by the three points in
Fig. 7.

The effect of stress triaxiality on the localization predictions has been studied by
considering far ficlds with a constant ratio p = ¢,/a, between the principal true stresses
[see (29)). Here, tor simplicity the initial angle of inclination of the void sheet is taken to be
o= 30 in all cases, and only the intermediate void size R,/ Dy = 0.173 is considered. In
Fig. 8 the predictions based on the simple shear band analysis and the porous material
model with /7 = 0.06 and ¢, = 30" are included as a reference curve, For p = 0 (uniaxial
plane strain tension) it is alrcady known from Fig. 6 that this reference curve is a little
below the prediction based on the cell model analysis.

Figure 8 shows that the localization strain is strongly dependent on the stress state,
For p > 0 the increased hydrostatic tension gives rapid void growth, which results in much
carlicr localization, while the opposite cffect §s found for p < 0. For positive values of p
there s reasonable agreement between the predictions of the cell model analysis and those
of the stmple shear band analysis. However, as p becomes negative there is an increasing
delay of the cell model localization predictions, relative to the simple model. In fact, a
cell model caleutation carried out for p = —0.5 was stopped at &, = 0.234, prior to any
localization, when the void volume was significantly reduced and the void had been fattened
out so that contact between void surfaces would have to be accounted for in a continued
computation. Based on the results of Fleck er al. (1988) for voids in pure shear fields, or
shear ficlds with superposed tension, such void closure would be expected for sutficiently

0.2 r
\
\ \{. l/Na particle
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v
L with particle
W o \ +,
\
A
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! \
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\
N
N
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1 1 4 ]
~-1.0 -0.5 o 0.5 [Re)
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Fig. 8. Localization strain vs principal true stress ratio, for Ro/ Dy = 0.175 and ¢, = 30°. Predictions
based on simple shear band maodel for /= 0.06 are shown for comparison,

SAS 75:18.0
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/—¢=041

0.4

03
Q.2

(a) (b) (c)

Fig. 9. Contours of constant maximum principal logarithmic steain at a stage beyond the onset of
localization, for R, D, = 0175, %, = 3 and a principal stress ratio p. () p = —0.25 with no
particle, (b) p = —0.25 with rigid particle inside voud, (¢) p = 0.25.

low values of p; but this flattening and closure of voids is not accounted lor in the porous
ductile material model (22) (28).

When the void is nucleated from a particle, by debonding of the particle matrix
interface at some stage, contact between particle and void surface can have a significant
influence on the subsequent behaviour, as has been tound by Fleck er of. (1988). Assuming
here that the void aucleates at zero strain, from a rigid, circular cylindrical particle, the
effect of subsequent sliding contact between particle and void surtace is expressed by (195).
This contact becomes active in a range of negative p values, where the voids would like to
flatten out and even close. In this range the particle pressure on the void surface results in
(additional) void growth. It is seen in Fig, 8 that the elfect of the particles promotes
localization significantly.

The effect of a particle was also accounted for in the computation of the localization
strain plotted for p = —0.125 in Fig. 8, and there was sliding contact between the particle
and the void surface. However, in this case the void surface pulled away trom the particle
somewhat before the onset of localization.

Figure 9 shows contours of constant maximum principal logarithmic strain for three
ol the computations plotted into Fig. 8. Figure 9a and b correspond to p = —0.25, without
particle and with particle, respectively, while Fig. 9¢ corresponds to p = 0.25. In all three
cases the stage shown s well beyond the onset of localization, and the width of the highly
strained band of material is of the order of the current void dimension. The current values
of /¥, in the three cases are 1.85, 2.90 and 4.28. respectively. Thus, in Fig. 9a the value
of pis still so lurge that the void grows; but the smaller axis of the oval void in Fig. 9a is
not as large as the particle, and therefore the particle in Fig, 9b has given rise to more void
growth and carlier localization. The significant void growth due to superposed hydrostatic
tension in Fig. 9¢ s the reason for the carly localization predicted in this case.

An analysis has also been carried out tor which the particle 1s initially fully bonded
[described by (14)]. but nucleates later at £, = 0.1. The case considered has p =0,
R/ Dy = 0175 and ¥, = 30", no nucleation occurs well after the onsct of localization in
the absence of particles (sce Figs 6 and 8). Nucleation is modelled by releasing the nodes on
the particle-matrix interface and stepping down the node forces in a number of subsequent
increments. [n the case analysed. elastic unloading of the far ficlds occurs immediately when
nucleation starts, and during the subsequent localized straining in a band of material along
the void-sheet the macroscopic stress level prior to nucleation is never reached again.
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Thus. localization s simultancous with nucleation in this case. as would be expected when
nucleation occurs much later than the localization predicted in the absence of particles.
Clearly. before nucleation the onset of localization is prevented by the particle stiffening
effect.

6. DISCUSSION

Previous analyses of the effect of a void sheet on the onset of plastic flow localization
have relied on the application of porous ductile material models. The micromechanical
analyses in the present paper are a first attempt on a full solution for a row of voids. taking
into account the detailed stress and strain fields around each void. the changes of the void
shape. and the interaction between neighbouring voids. It is found that localization of
plastic flow is actually predicted in a narrow zone around the void sheet. Furthermore, for
a given initial geometry of the void sheet the smallest critical localization strain is found
for a certain critical angle of inclination of the void sheet. as expected. The current angle
of inclination at first critical localization is found to be around 37 in the cases of uniaxial
plane strain tenston considered here : somewhat smaller than the values predicted by porous
ductile material models.

The choice of material model for the matrix material would have a strong effect on
localization predictions. Here, strain hardening J, flow theory s used. so it is known
beforchand that all matrix material will remain in the clliptic range, and that cven
inhomogencities will not give shear localization tn the matrix (Rice, 1977 ; Hutchinson and
Tvergaard, 1981). Therefore, in the cases analysed, localization of plastic flow can only
occur as a result of the vouds, The same classical plasticity model was used for the matrix
material in previous micromechanical studies of localization (Tvergaard, 1981, 19823, and
ts also the basis of the porous ductile material modet (22) (28).

The void volume fraction distributions in a material containing a single layer of voids
arc not well defined, and theretore comparison with localization predictions based on
porous ductile material models is difficult. In fuct, the present micromechanical studics can
be directly used to calibrate the porous material model, i.c. determine the appropriate voeid
volume fraction for representing a single tayer of voids as a porous slice of material,
According to Figs 6 and 7 the appropriate bind width used to caleulate the void volume
fraction should be about half the void spacing, somewhat larger for larger voids relative to
the spacing. A somewhat different interpretation is obtained from the contour plots in Figs
4, 5 and 9, which show that the width of the highly deformed band of material is of the
order of the largest dimension of the deformed void. Tt is noted thut these predictions are
entirely based on a void-sheet made up of a single row of circular cylindrical voids ; but it
1s expected that a sheet of periodically distributed spherical voids would behave in about
the same way. Clearly, o micromechanical analysis accounting for spherical voids inside
the band would have to be a three-dimenstonal analog of the cell model analyses carried
out here.

The appropriate width and void volunie fraction of a porous zone used to represent a
single layer of voids has been discussed in some detail by Becker er ol (1989). who
studied ductile crack growth in an Al-Li alloy for which void nucleating particles appear
predominantly at the grain boundaries. Based on Tvergaard’s (1982) comparison of numeri-
cal results for arrays of spherical voids with the porous material model it was argued that
the most realistic width of the grain boundary porous zone, for use in converting the area
fraction of voids to a volume fraction, is of the order of the void spacing. It was ecmphasized
by Becker ¢r al. (1989) that the estimate based on these comparisons would only apply
when the maximum principal stress direction is normal to the grain boundary. Now, on the
basis of the present investigation it appears that for boundaries inclined to the maximum
principal stress direction the width of the grain boundary porous zone should be chosen
somewhat smaller, of the order of half the void spacing.

The effect of the inclusion remaining inside the void after nucleation is usually neglected
in porous ductile material models. This is quite reasonable in a large range of stress states,
where the void expands to dimensions larger than the particle. However, in the range of
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rather low hydrostatic tension the voids tend to flatten out. so that their minimum dimension
does not allow for the presence of the particle. For such cases Fleck er al. (1988) have
analysed the influence of sliding contact between the particle and the void surface and found
that the effect of the particies can significantly add to the void growth, or even give void
growth where there would otherwise have been void ¢losure. The present micromechanical
studies show (Fig. 8) that also the onset of plastic low localization is strongly affected by
the particles. [n the absence of particles. at low levels of triaxial tension, the voids close up,
and no localization is predicted. whereas the presence of particles enforces 2 material
softening that finally results in localization.
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