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Abstract-A single layer of voids in a ductile solid. with no other voids present. acts as an
inhomogeneity that promotes the onset of plastic flow localization in a shear band. For such a void­
sheet consisting of a row of circular cylindrical voids the onset of localization is analysed. taking
full account of the interaction between neighbouring voids. If a porous ductile material model is
used to analyse this behaviour. representing the void-sheet as a slice of material with initi;11 porosity.
the void volume fraction to be used is not well defined. However. the present full numerical analysis
of the localization problem is used to calibrate the simple model. Also the effect of inclusions inside
nucleated voids is studied. and it is found that the additional void growth enforced by such inclusions
can have a significant influence on localization predictions.

I. INTRODUCTION

Several investigations of ductile materials containing microscopic voids have shown that
the resistance to localization of plastic flow in a shear band is strongly influenced by
porosity. Yamamoto (1978) made use of Gurson's (1977) dilatant plasticity model of a
porous ductile solid to show this dependence. and the elli:ct of void nucleation was included
in studies based on the same material model by Needleman and Rice ( 1(78) and Saje 1.'1 al.
(1982). More recent studies have shown that the additional influence of the formation of a
rounded corner on the yield surface. modelled in terms of a kinematic hardening description
of a porous ductile material. results in earlier localization (Mcar and Hutchinson. 1985;
Tvcrgaard. 1(87).

Cell model studies representing the etrcct of periodic arrays of voids have also been
used to directly study the onset of localization in ductile porous solids. Such studies take
full account of the nonuniform stress and strain distributions and the interaction between
neighbouring voids. whereas the porous ductile material models represent the local stress
distribution around voids in terms of an average flow stress value. For a square array of
circular cylindrical voids in a material subject to plane strain tension Tvergaard (1981) has
analysed the bifurcation into a periodic pattern. which represents the mode of deformation
inside a shear band. It was found that after a small modification of the Gurson model.
localization predictions based on this model were in good agreement with those obtained
by the more accurate numerical study. This covers the critical values of strains and stresses
as well as the angle of inclination of the first critical shear band.

Analyses for a circular cylindrical body containing a spherical void have been used by
Tvergaard (1982) to investigate a material with a periodic distribution of spherical voids.
This cell model was also used to predict localization. but due to the assumption ofaxisym­
metry only bands normal to the maximum principal tensile stress can be represented. More
n:cently. the same type of model problem has been used by Koplik and Needleman (1987)
to study the void voalescence behaviour well beyond the onset of localization. In order to
consider localization in an inclined shear band for a material containing spherical voids a
full three-dimensional analysis is required, as that carried out recently in a study of the
interaction of two size-scales of voids (Tvergaard. 1988).

If the voids are only present along a single plane in the material. this void sheet will
act as an imperfection. which promotes localization along that plane. In terms of a porous
material model this situation would be represented by a thin slice of material containing
initial porosity. with no porosity outside. However. the void volume fraction to be used
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inside the band is not well defined when there is only a single layer of voids. With this
quantity undefined. a cell model study is needed to determine the localization behaviour.
taking into account the actual stress and strain fields in the material near the voids. Such
analyses are carried out here for a layer of circular cylindrical voids in a material subject
to plane strain conditions.

The problem considered here is also of interest in other cases where voids tend to
appear in a single layer. Thus. in an aluminum alloy with coarse grain boundary particles.
investigated by Becker et al. (1989). voids nucleate at the grain boundaries. and the
appropriate width of the grain boundary porous zone is an issue. as well as the appropriate
void volume fraction inside this zone.

1. PROBLEM FORMULATlO;\l

In the material analysed the initial inhomogeneity is represented by a row of uniformly
spaced circular cylindrical holes with the radius Ro and the spacing 2Do• as shown in Fig. I.
The initial angle of inclination between the void-sheet and the xl-axis is r/lo. The dimensions
of the block of material arc assumed infinite relative to the void spacing. and the principal
macroscropic true stresses are (11 and (1~ in the Xl. and .\·~-directions. respectively. Thus. the
material far from the void sheet must behave as a uniformly strained material subject to
the prescribed stress history. All significant differences from this uniform field are contained
in a hand around the voids. as that between the two dashed lines parallel with the void
sheet in Fig. I. If the band is made sulliciently wide relative to the void spacing. the fields
in the outer parts of the band will he essentially identical to the uniform fields outside the
hand.
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Fig. I. Material containing a row of uniformly spaced circular cylindrical voids. The region ABeD
is analysed numerically.
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As shown in Fig. I the band is divided into a number of cells with sides parallel to the
xC-a.'<is. The initial width of a cell is :!A o = 2Do cos 1/10 and the initial height is Bo• so that
the initial width of the band analysed is 2Bocos 1/1 o. Since the solution is periodic along the
void sheet. with a period corresponding to the void spacing. all the cells undergo identical
behaviour. Therefore. in the numerical solution it is only necessary to analyse one of the
cells. i.e. the region ABeD shown in Fig. I. The formulation of the boundary conditions
for this cell is rather similar to that used by Fleck et al. (1988) in a study of the nucleation
and growth of voids in a shear field. However. in the present shear localization problem
the width of the cell ch,lOges and the edges rotate due to the straining of the far field. Thus.
if the current principal logarithmic strains in the far field are 1:1 and I:~ (in the Xl. and x~­

directions, respectively), the current width of the cell is controlled by I: I and the current
angle of inclination 1/1 of the void sheet is given by

( I )

The boundary conditions are specified in terms of the Cartesian displacement com­
ponents II' and the nominal traction components T. where II J == 0 since plane strain con­
ditions are considered. When it is assumed that the centre of the void belonging to the cell
ABeD does not move. the displacement components 1I~~ and 118 at the two corner points A
and B are determined by the far field strains 6\ and r.~ and the rotation (I) as

(2)

(3)

Similar conditions apply to the edge DC, but here the displacements arc also assumed to
vary linearly between the two corners, to give complete compatibility with the 1~lr fieId.
Thus. in tcrms of the length measuring coordinate ~ on DC the displacements are

(4)

(5)

Furthermore. the resultant forces on the edge DC must agree with the stress lield outside
the band

(6)

(7)

On the cell sides AD, BC and An the periodicity and symmetry conditions are such
that equilibrium and compatibility with the neighbouring cells is satisfied. This is expressed
by using the length measuring coordinates ~ I' ~ ~, "1 and '1 ~ (sec Fig. I).

(8)

(9)

( 10)
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Ii I ( IJ I ) = - U
l

( IJ.: ). ( I I)

(12)

T I = T= = O. ( (3)

If there is a partick inside the \·oid, the conditions arc more complex. as has been
discussed by Fkck et al. (1988). Then the conditions at the void surface are conveniently
expressed in incn:mental form, \vhere ( . 1denotes a small increment. using the current angle
(p between the xl-axis and the surface point considered. For a bonded particle (13) is
replaced by

Iii cos cp+li': sin (p = 0, (14)

Here, Ij is the incremental angle of rotation of the particle. which is determined such that
no n:sultant moment acts on the particle.

Void nuckation is moddkd in a few computations by assuming that all points on the
vpid SUr!;ICI<: al'l<: n:kasl<:d from thl<: surfal<:l<: simultanclHlsly (sec also Flcl<:k I't tI/.. 1l)~Xl. while
thl<: surl;l\"e tractions al'l<: stl<:pped down to zcro in a fcw suhsequent increments. At points
w!l\:re the radius decrcascs hehnv R". sliding contact with the particlc is assumed. described
by

( 15)

Thi" sliding contact remains as long as the normal stress is compressive. while other points
of the void sur/;lce satisl~' ( 13).

To sunllnarizc. equilihrium and compatibility inside the slice of material analysed is
enforced hy the edge conditions (X) (( 5). together with the fidd I<:lfu;ltions inside the region
ABCD. At the intarace hl,;tween this slke of material and the uniform fkld outside,
compatihility is enforced hy (-ll and (5). whill<: equilihrium is enforced hy (6) and (7).

It is noted that the cell sides AD and Be need not he parallel with the x=-axis in the
initial conliguration. as shown in Fig. I. All equations arc valid for otha orientations too,
e.g. for cell sides normal to the void sheet. The cdls shown in Fig. I have the advantage
that the sides remain parallel to the x=-axis in n:gions where the far field is dominant.

The cdl model analysis is hascd on a Lagrangian fllrmulation of thc fidd clfuations.
using thc Cartesian x' cOllrdinate system as rd'crenl:c. The Lagrangian strains arc given hy

( 16)

where ( ), denotes covariant dill'crentiation in the rd'crence configur;ltion. The contra­
variant l:omponents ," of thc Kirl:hholf slress tensor on the deformed hase vectors arc
rdated to the Call1:hy stress tensor fT" by

," = \/G/.lJ()" ( 17)

where if" and (i'l arc the metric tensors in the rcl'crence configuration and the current
wnfiguration, respectively, with determinants f/ and G. The equilibrium equations inside
the l:ell arc expressed in terms of the principle of virtual work.

The d uctilc material behaviour is represented hy J =-tlow theory. using the finite strain
generalization discussed by Hutl:hinson (1973). The incremental stress strain relationship
is of the form i" = [""'lli. with the tensor of instantaneous moduli given hy
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Here. Ge = (35 ,1511 2) 1 =is the effective Mises stress. with 511 = !'I - GlitZ! 3. the value of fJ is
I or 0 for plastic yielding or elastic unloading. respectively, E is Young's modulus, ~. is
Poisson's ratio. and E, is the slope of the true stress vs natural strain curve at the stress
level Ge • The uniaxial stress-strain behaviour is represented by

1· forE' G ~ G,.

,~ 15 (:.J ( 19)

for G > G"

where G, is the uniaxial yield stress. and fl is the strain hardening exponent.

3. SIMPLE LOCALIZATION ANALYSIS

LOI:,tliz,ltion indul:ed by a sheet of voids as that shown in Fig. I I:an also be analysed
by applil:ation of a porous material model. Then the void sheet is reprcsentl:d as a slil:e of
material with uniform void volume fruction/'. while there arc no voids outside the band,

.t' == o.
The field quantities outside the band arc identical to those or the unirorm 1~lr lkld

considered in Section 2. spel:ilied by the external loading. Then. with the initial angle or
indination '/I u of thl: band the I:urrent angle of indination is still givcn by (I). The lidd
quantities inside and outside the band, denoted by ( >" and ( )", respel:tively. have to satisry
wlllpatihility and equilibriulll over the band interf:.Ke (sec Fig. 2). In the Cartesian referenl:e
l:oordin,lte system compatibility requires continuity of the tangential derivatives of the
disrlal:emcnt I:ornponcnts II, over thc intcrfal:c. Thus, thc displ;Kcmcnt gradicnts insidc thc
band can bc cxpresscd by

Fig. Z. Shear band in a homogeneously strained solid.
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u;', = II?, + (', n, (20)

where n, is the unit normal in the reference state. and (', are parameters to be determined.
Equilibrium requires balance of the nominal tractions on each side of the interface

(T')" = (T')". (21 )

A set of incremental equations for (', are obtained by substituting the incremental constitutive
relations for the porous ductile material into the incremental form of (21). using (20) to
express the strain increments inside the band. From these incremental algebraic equations
for (', the onset of localization is determined as the point where elastic unloading takes place
outside the band.

The porous ductile material model proposed by Gurson (1977) makes use of an
approximate yield condition of the form et>(rr". rr\,'/) = O. where rr" is the average macro­
scopic Cauchy stress tensor. rr\, is an equivalent tensile tlow stress representing the actual
microscopic stress state in the matrix material. and f is the current void volume fraction.
An approximate yield condition derived on the basis of a spherical model problem is of the
form

, ( k)rr<' rr, •
(I> = " +2lf,fcosh .., ." -(I +((/1/))' = ()

rr.\, _rr II
(22)

where rr} = (ll'",1"'/2)1 I is the macroscopic etfective Mises stress. detined in terms of the
stress deviator .1'" = (1" - (i"rrZ / 3. The yield condition proposed hy Gurson (1977) has If I = I
in (221: hut it was found hy Tvergaard (11)Xl. 19X2) that using lfl ~ 1.5 givesconsiderahly
improvl:d agreement with detailed numerical studies for periodically distributed circular
cylindrical voids in elastic plastic solids (more discussion of the most appropriate If I-value
is given hy Tvergaard. 19!il».

The plastic part of the macroscopic strain-rate for the porous ductile material is taken
to be given hy

(1<1>
." A'l" = 1 II( rr

(23)

since normality of the plastic now rule for the matrix material implies macroscopic normality
(Gurson. 1977). Furthermore. defining the microscopic efl'ective plastic strain 1;1;, in terms
of the uniaxial stress ..strain relation for the matrix material. I:';, = (I/E,-I/E)r1\,. and
assuming an equivalent plastic work expression. rr"li:; = (I -/)rrlll:;',. the rate of change of
the matrix flow stress is

. EE, rr'/li:;
<1.11 = . . .

£ - £, (I - j)rr II
(24)

Since the matrix material is plastically incompressible. the rate ofgrowth of the void volume
fraction is

f = (1 _f)Gllli,~·. (25)

The value of the parameter A in (23) is determined from the consistency condition.
ti> = O. using (24) and (25). The result is

. r I ,. kl
'l" = II 1I/,/1I1kl (1

where 'f;k1 is the Jaumann rate of Cauchy stress and

(26)
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f . (uZ)J:: = - q I smh -.,--
2 ..a.l,(

(27)

a\1 [ (~<l> (~<l> EE, I (a; uZ)JH = -:;- -31:(1-f),. - -~- --- -- -, +1: -. ._ ('f caJI E - E, I - f a;'1 a \1
(28)

Plastic yielding initiates when <l> = O. and continued plastic loading requires <l> = 0 and
mkl(,kl/ H ;:: O. Finally. the incremental stress-strain relationship to be used in the incremental
form of (21) is obtained by taking the total strain rate to be the sum of the elastic
and plastic parts. and inverting the resulting expression (see Needleman and Rice. 1978;
Tvergaard. 1989).

It is noted that often nucleation of new voids is included in the porous ductile material
model. by adding an extra term in (25). Furthermore. (22) can be modified to better model
void coalescence at relatively large void volume fractions. However. in the present paper
neither nucleation nor coalescence will be considered.

4. NUMERICAL SOLUTION PROCEDURE

The model problem illustrated in Fig. I is specilied by a number of conditions (I )-( (1)

that rely on knowing the stress state and the strain state in the uniform field far away from
the void sheet. This far field solution is here taken to satisfy the relation

11, = fll1 ~ (29)

where fl is a fixed ratio between the principal true stresses. The corresponding principal
logarithmic strains f: 1 and f:~ arc determined by a simple incremental solution for the
constitutive law with instantaneous moduli (I X). so that the variation of the quantities (f ,.

I:, and I:> as functions of the major prinl:ipal stress (f~. is knownl/ priori.
The field equations inside the cell AHCD in Fig. I arc solved by using a finite element

approximation of the displal:ement fields in the inaemental principle of virtual work. An
example of the mesh used is shown in Fig. 3, where each quadrilateral is built up of four
linear displal:ement triangular elements.

Fig. 3. Mesh used for R,,/ D" = 0.175 and t/J" = 30 .
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A special Rayleigh-Ritz finite element method (Tvergaard. 1976) is used to implement
the periodic boundary conditions. The displacements of the nodal points on the sides AD.
BC and AB are chosen as parameters in the Rayleigh-Ritz solution. together with ub and
1I~. For a small prescribed increment ac of the major tensile stress outside the band the
corresponding change of the whole far field is known from the a priori solution. and thus
the values Ul~. U

C
j • uk and u~ are directly obtained from (I H 3). Then. the parameters in

the Rayleigh-Ritz solution are determined so that the boundary conditions (4}-(12) are
satisfied in addition to internal equilibrium.

Localization of plastic flow occurs when elastic unloading takes place outside the band.
in the far field. In the last few increments before localization ac has to be very small to
keep the incremental elongation Iibof the cell at a reasonable level. In these increments Iib
is prescribed. with a reasonable estimate of ac used in ( I }-(31. and elastic unloading outside
the band is taken to be defined by G"c < 0 according to the integral (6) along the edge of the
cell. When the computation is continued beyond localization. lib is also taken to be
prescribed. but here the small reductions of E I and ~:c during elastic unloading are neglected
in ( I )--(3).

It is noted that. as a check. the same computation has been carried out with a regular
mesh inside the region ABCD. representing the case where there are no voids. For this case
it was confirmed that the uniform solution inside the cell. resulting from (I) -( 12). remained
identical to the far field.

5. RESULTS

The material to he analysed here is taken to have the initial yield stress fT,1 E = 0.002.
the strain hardening exponent /I = 10. and Poisson's ratio \' = 0.3. The initial dimensions
of the eell analysed (see Figs I and 3) are specified hy !l,,1 A" = 4. and in most of the eases
considered the material far from the void shed is suhjected to uniaxial plane strain tension.
as specified hy fI = 0 in (29).

Figure 4 shows deformed meshes and contours of constant maximum principal log­
arithmil.: strain at two stages of deformation in a case where the initial void sile is specified
hy R" 'D" = 0.125. and the initial angle of indination of the void sheet is I{I" = 30'. At the
first stage (Fig. 4a) the major principal logarithmic strain in the far field is I:; = 0.()J3. finite
strains have started to occur near the void. and the void has grown a lillie to VI V" = 1.2X.
where " and "" are the current void volume and the initial void volume. respectively .

(0)

.= 0.1

• =0.4

Fig. .t. Dcforl11.:d m.:sh.:s and .:onlours of constant ma~imul11 prin.:ipal logarithmic strain for
R" n" = 0.125 and ,/I" = 30 . (a) At r., = 0.1))3. (h) aftcr localization. which occurs at r.', = 0'(JH3.
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localization of plastic flow occurs at the critical strain c;'; "" 0.083 (in the far field). where
elastic unloading takes place in most of the region analysed. away from the void. The
second stage (Fig. 4b) is well beyond the onset of localization. with J' J'1l "" 3.36 and very
high level of straining in the material near the void. Both the strain contours and the
deformed mesh show that the high localized deformations occur in a rather narrow band.
which is not much wider than the current void dimension. In the top part of the region
analysed the stress and strain fields remain nearly uniform throughout the deformation. at
levels agreeing very well with the specificed far field. as expected.

Figure 5 shows similar results for a larger initial void. specified by Rni D,l "" 0.25. again
with !/In "" 30 and p "" O. The far field strains at the first two stages are f;~ "" 0.0036 and
c;: "" 0.0106. respectively. while the last stage (Fig. 5c) is way beyond localization. which
occurs at c;'; "" 0.0118. Thus. localization occurs soon after the stage in Fig. 5b: but it is
seen that the level of straining inside the band is much higher in Fig. 5c. As in Fig. 4 the
width of the band containing the highly strained material appears to be a little wider than
the current void dimension.

Figure 6 shows plots of the localization strain F.: vs the initial angle of indination of
the void sheet. The minima of the curves determine the most critical orientations of the
void sheets. Results of 12 different numerical analyses arc shown. covering three ditlcrent
v'llues of Rill Dn• 0.125. 0.175 and 0.25. and including the results corresponding to Figs 4
and 5. localization results obtained by the simple analysis (20). (21) arc also shown in Fig.
6. thus using the porous material model (22}-(28). with if, "" 1.5. to represent the void­
sheet. With no voids outside the band. III == O. the void-sheet is here represented by con­
sidering initial void volume fractions inside the band ranging fromft "" 0.0.1 tolt = n.ox.
Since the strain lields outside the band used for the simple analysis arc identical to the I~lr

lields used in the full numerical model prohlem. the current angle of inclinationl/! at a given
strain level is the same for both models. as specified by (I).

It is seen in Fig. () that the general shapes of the l.:urves found by the l.:e1lmodd analysis
arc in good agreement with those given hy the simple shear hand analysis. However. the
minima of the l.:urves predicted by thc l.:cll model analysis Ol.:l.:ur at somewhat smaller valucs
of the initial angle of inclination 1/!11 of the void sheet: about 5 smaller than the values
found by the simple analysis. Therefore. also thc currcnt angle of indination at thc onset
of localization is smaller for the l.:cll model analysis [sec (1)1.

Interpolation bctwel:n the curvcs for various values of/t in Fig. 6 can be used to
t:stimate the initial void volumc fraction that gives a localization strain corresponding to
tlult found for a given value of Rot Do. Al.:con.ling to Fig. 6 the minimum localization strains
obtained for the values O. I25.0.175 and 0.25 of Rol /J" arc also approximatdy obtaincd for

(0 I

.=0.4

0.3
0.2
0.1

(bl

• =0.4
0.3
0.2
0.1

(el

Fig. 5. Contours nf cnnstant maximum principal logarithmic strain for R" Dn '" 0.15 and o/J" '" 30 .
(;1) At r., '" 0.0036. (hI at r., = 0.0106. (cl after \OI.:ali7.ation. which occurs at r.', '" O.OIIX.
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and 1/1 = 1.5.

the initial void volume fractions 0.029, O.()4l) and 0.OX4, respectively, in the simple shear
hand analysis.

Representing a row of voids as that shown in Fig, I in terms of a porous ductile
lllaterialmodel makes it necessary to estimate the appropriate void volume fraction in the
void sheet; but this requires knowlcdge of the width of the porous slil:e of material. If the
initial band width 2 Wo is known. together with the void sp,ll:ing 2/)0 and the radius R Il ,

the void volume fraction inside the band can be calculated directly. The curves in Fig. 7

1.2

1.0

0.8

cf
...... 0.6
~

0.4

0.2

o 002 004 008 0.10 o 12

Fig. 7. Corrcsponding valucs of initial hand width 2 IV" and void volumc fraction/to for various
valucs of Rn ! Dn . Thc valucs found in Fig. fl arc indicated hy dashed circles.
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show corresponding values of the ratio Wo Do and the void volume fraction it. for the
three different values 0.115. 0.175 and 0.15 of the ratio Ro/ Do. The values ofit that give
approximately the same localization strains as those found in Fig. 6 by the full numerical
analysis (see discussion above) are indicated on the curves as dashed circles. These three
points in Fig. 6. which rely on a comparison of localization predictions. provide an estimate
of the appropriate band width that should be used to calculate "the void volume fraction
in the void-sheet". It is seen that the appropriate band width is of the order of half the void
spacing. somewhat increasing with increasing void size relative to the void spacing. In fact.
the expression

(30)

gives a rather good representation of the band widths specified by the three points in
Fig.7.

The elreet of stress triaxiality on the localization predictions has been studied by
considering far fields with a constant ratio II = (TI/rr~ between the principal true stresses
[see (~9)1. Here. for simplicity the initial angle of inclination of the void sheet is taken to be
1/1" = 30 in all cases. and only the intermediate void size Rn/ Dn = 0.175 is considered, In
Fig. X the predictions based on the simple shear band analysis and the porous material
modd with/t = 0.06 and '/In = 30' arc included as a reference curve. For p = 0 (uniaxial
plane strain h:nsi\Hl) it is already known from Fig. (1 that this referelll:e curve is a lillie
below the prediction hascd on the cell model analysis.

Figure Xshows that the localization strain is strongly dependent on the stress state.
For II > () the increased hydrostatic tension gives rapid void growth. which results in much
earlier localization, whik the opposite ellcct is found for II < O. For positive values of I'
there is reasonahle agreement between till: predil,tions of the eellmodcl analysis and those
or the simple shear hand analysis. However. as II hecomes negative there is an increasing
dday of the cell model localization prcdictions. relative to the simple model. In f~let. a
cell model cakulation carried out for II = -0.5 was stopped at l;~ = 0.234. prior to any
localization. when the void volume was significantly reduced and the void had been llaltencd
out so that contact between void surfaces would have to be accounted for in a continued
computation. Based on the results of Ficek et al. (I9XX) for voids in pure shear fields. or
shear fields with superposed tension. such void closure would be expected for sutlkiently
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Fig. R. Locali7ation strain vs principal true stress ratio. for Ro/ Do = 0.175 and 1/1" = 30 '. Predictions
h..scd on simple shear h'll1d model for Ii = 0.06 are shown for comparison.
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low values of I'; nut this llattening and closure of voids is not accounted for in the porous
ductile materialmodcl (22) (2X).

When the void is lllu.:leatcd from a particle. by denonding of the particle matrix
interface at some stage. contact betwcen particle and void surface can have a significant
inlluence on the subsequent nehaviour. as has been found by Fleck (., ill. (19l'\l'\). Assuming
here that the void nucleates at zero strain. from a rigid. circular cylindrical partil:le. the
efli:et of subseq uent sliding contact between particle and void surface is expressed ny ( 15).
This contact becomes al:tive in a range of negative II values. where the voids would like to
llatten out and even close. In this range the particle pressure on the void surfal:e results in
(additional) void growth. It is seen in Fig. l'\ that the d1l:et of the particles promotes
localization signitil:antly.

The d1l:ct of a panicle was also accounted for in the computation of the localization
strain plotted for p = - 0.125 in Fig. X. and there was sliding contact between the particle
and the void surl~ll:e. However. in this case the void surface pulled away from the particle
somewhat before the onset of localization.

Figure 9 shows contours of wnstant maximum principal logarithmil: strain for three
of the l:omputations plotted into Fig. X. Figure 9a and b correspond to p = - 0.25. without
particle and with particle. respectively. while Fig. l)l: l:orresponds to 11= 0.25. In all three
cases the stage shown is well beyond the onset of 10l:alization. and the width of the highly
strained nand of material is of the order of the current void dimension. The current values
of 1'/1'0 in the three l:ases are I.X5. 2,90 and 4.2X. respectively. Thus. in Fig. 9a the value
of p is still so large that the void grows; but the smaller axis of the oval void in Fig. 9a is
not as large as the particle. and therefore the particle in Fig. 9n has given rise to more void
growth and earlier Im:alization. The signilicant void growth due to superposed hydrostatil:
tension in Fig. ge is the reason for the early localization predicted in this case.

An analysis has also been carried out for which the particle is initially fully bonded
[described by (14)1. but nucleates later at I:: = 0.1. The l:ase l:onsidered has p = o.
Ro/ Do = 0.175 allli t~o = 30 . no nucleation occurs well after the onset of localization in
the absence of particles (sec Figs 6 and X). Nucleation is modelled by releasing the nodes on
the particle-matrix interface and stepping down the node forces in a number of subsequent
increments. In the case analysed. elastic unloading of the far fields OCl.:urs immediately when
nucleation starts. and during the sunsequent localized straining in a nand of material along
the void-sheet the macroscopic stress level prior to nucleation is never reached again.
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Thus. localization is simultaneous with nucleation in this case. as would be expected when
nucleation occurs much later than the localization predicted in the absence of particles.
Clearly. before nucleation the onset of localization is prevented by the particle stiffening
effect.

6. DISCCSSlO;-';

Previous analyses of the effect of a void sheet on the onset of plastic flow localization
have relied on the application of porous ductile material models. The micromechanical
analyses in the present paper are a first attempt on a full solution for a row of voids. taking
into account the detailed stress and strain fields around each void. the changes of the void
shape. and the interaction between neighbouring voids. It is found that localization of
plastic flow is nctually predicted in a narrow zone around the void sheet. Furthermore. for
a given initial geometry of the void sheet the smallest criticnl localization strain is found
for a certain critical angle of inclination of the void sheet. as expected. The current angle
of inclination .It first critical localization is found to be around 37 in the cases of uniaxial
plane strain lension considered here: somewhat smallcr than the values predicted hy porous
ductile materialmoJels.

The choice of material model for the matrix material would have a strong cnect on
locali7ation predictions. Here. strain hardening J~ now theory is used. so it is known
beforehand that all matri, material will remain in the elliptic range. and that even
inhomogeneities will not give shear localization in the matri, (Rice. JI)77: Hutchinson and
Tvergaard. IlJX I). Therefore. in the cases analysed. locali7ation of plastil' flow can only
occur as a result of the voids. The same classical plasticity model was used for the matrix
material in previous miemmechanieal studies of locali/ation (Tvergaard, 191'1 I, JI)X~l, and
is also the basis of the porous ductile materialmodcl (~~) (2X).

The void volume fradion distributions in a material containing a single layt:r of voids
arc not well defined, and therefore comparison with Im;ali/ation predidions based on
porous dlKtile material models is dillieult. In l~lct. the present micromechanical studies can
he diredly used to calibratt: the porous material model, i.e. determine the appropriate void
volume fraction for representing a single layer of voids as a porous slice of material.
According to Figs 6 and 7 the appropriate band width lIsed to cah.:ulate the void volume
fraction should be about half the void spacing. somewhat larger for larger voids relative to
the spacing. A somewhat dill"crent interpretation is ohtained from the contour plots in figs
4, 5 and 9, which show that the width of the highly deformed hand of material is of the
order of the largest dimension of the <.kformed void. It is noted that these predictions are
t:ntirely based on a void-sheet made up of a single row of circular cylindrical voids; but it
is e.xpected that a sheet of periodically distributed spherical voids would behave in about
the same way. Ck~lrly, a micrLll11echanieal analysis accounting for spherical voids inside
the band would have to be a three-dimensional analog of the cell moJd analyses earrieJ
out here.

The appropriate width and void volume fraction of a porous zone used to represent a
single layer of mids has been discussed in some detail by Becker c( al. (19X9l. who
studied ductik crack growth in an AI Li alloy for which void nucleating particles appear
predominantly at the grain boundaries. Based on Tvcrgaard's (19X2l comparison ofnumeri­
cal results for arrays of spherical voids with the porous material model it was argued that
the most realistic width of the grain boundary porous zone. for usc in converting the area
fraction of voids to a volume fraction. is of the order of the void spacing. It was emphasized
by Becker c/ al. (19!\9) that the estimate based on these comparisons would only apply
when the maximum prilKipal stress direction is normal to the grain houndary. Now, on the
basis of the present investigation it appears that for boundaries inclined to the maximum
principal stress direction the width of the grain boundary porous zone should be chosen
somewhat smaller. of the order of half the void spacing.

The ctreet of the inclusion remaining inside the void aftcr nucleation is usually neglected
in porous ductile material models. This is quite reasonable in a large range of stress states.
where the void expands to dimensions larger than the particle. However. in the range of
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rather low hydrostatic tension the voids tend to lbtten out. so that their minimum dimension
does not allow for the presence of the particle. For such cases Fkck t'l al. (1988) have
analysed the influence of sliding contact between the particle and the void surface and found
that the etTect of the particks can significantly add to the void growth. or even give void
growth where there would otherwise have heen void closure. The present micromechanical
studies show (Fig. 8) that also the onset of plastic flow localization is strongly affected by
the particles. In the absence of particles. at low levels of triaxial tension. the voids close up.
and no localization is predicted. whereas the presence of particles enforces a material
softening that finally results in localization.
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